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Abstract

Despite extensive empirical evidence of the economic and financial benefits of green buildings, the

adoption of energy retrofit investments in existing buildings has been limited. The global push to

increase the efficiency of the building sector, including city-level policies requiring energy use disclo-

sure and mandatory energy audits, continues to face barriers caused by information asymmetries,

insufficient pricing signals, principal-agent challenges, and uncertainty in the risk and return of en-

ergy retrofit investments. This paper develops a substantial, large-scale database of building energy

use, energy audit reports, land use, and financial characteristics in New York City to empirically

model the hurdle rate for energy retrofit investments, using actual audit data and permitted reno-

vation work. By modeling the estimated rate of return for energy retrofit investments for different

property types and building characteristics, we generate a more comprehensive understanding of

the perceived risk of these investments and the market and regulatory mechanisms that can over-

come financial and informational barriers to the adoption of energy conservation measures (ECMs).

Median internal rate of return (IRR) for adopted ECMs is found to be 20% for Multifamily and

24% for Office, which is consistent with the estimated return of a bundle of NPV-postive ECMs.

Adoption rates are higher for Office buildings than Multifamily, and in both cases adopter buildings

tend to be larger, higher value, and less efficient at time of adoption. Based on our methodology,

we propose the development of a National Retrofit Investment and Performance (NRPI) database.

This database would track building-level energy audits, implemented energy conservation measures

and retrofit investments and their financial and energy performance metrics, and pre/post energy

use profiles.



1. Introduction

There is an extensive body of research on the opportunity for retrofitting existing commercial

buildings to reduce national energy use and carbon emissions (Chidiac et al., 2011; Koomey et al.,

1998; Ma et al., 2012; Papadopoulos & Kontokosta, 2019). Despite the potential positive impacts of

such a reduction, the pace of adoption of energy efficient practices and technologies has been slow, and

significant barriers–both perceived and actual–persist (Ardente et al., 2011; Eichholtz et al., 2010;

Fuerst & McAllister, 2009; Koomey et al., 2001). These barriers include information asymmetries

between stakeholders, uncertainty over future savings, lack of knowledge about energy technologies,

first-cost capital constraints, economic dis-incentives including the split-incentive problem, and the

decreasing cost of fuel (Fuerst et al., 2014; Mills et al., 2006; Palmer & Walls, 2015). To overcome

these obstacles, the recent proliferation of energy disclosure policies in U.S. cities has generated

significant new streams of data on energy use in buildings to benchmark performance, led by New

York Citys (NYC) Local Law 84 (LL84) (Hsu, 2014; Kontokosta, 2013, 2015).

New energy disclosure, audit, and retro-commissioning requirements create detailed inventories

of building energy use, systems, and potential energy conservation measures (ECMs) (Mathew et al.,

2015). Energy audit and retro-commissioning requirements have also begun to emerge alongside dis-

closure mandates, providing owners, tenants, and policymakers with detailed accounting of building

systems and energy end-use, as well as the energy savings and cost savings potential of the imple-

mentation of specific ECMs. NYC Local Law 87 (LL87) is the first city-wide building energy audit

mandate in the U.S. (Marasco & Kontokosta, 2016). Early studies indicate that energy disclosure

is driving meaningful reductions in building energy use in U.S. cities (Meng et al., 2017; Palmer

& Walls, 2015; Papadopoulos et al., 2018). Yet few studies have examined the impact of audits

on energy use reductions and retrofit investment decisions in large office and multifamily buildings.

This is an important omission; mandatory audits implicitly provide a natural experiment for the

measurement of the hurdle rates of return on investment that must be exceeded before energy ef-

ficient investment is deemed profitable in the private sector. Such insights can subsequently guide

education, regulations, or subsidy policies.

In addition to these informational regulations, cities are beginning to introduce carbon reduction

and energy efficiency mandates. In NYC, the Climate Mobilization Act requires buildings over

25,000 square feet to reduce carbon emissions by 40% from 2005 levels by 2030 and 80% by 2050.

Given regulatory and market pressures to improve energy efficiency, building owners, investors, and

policymakers need to understand the financial implications of the various pathways to energy use
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reductions through building retrofits. Previous research has shown that the most significant barriers

to retrofit adoption are perceived or expected long payback periods on ECM investments and a lack

of access to capital to fund implementation costs (Amstalden et al., 2007; Jackson, 2010; Kontokosta,

2016). However, despite these survey-reported findings, there is little understanding of the potential

return on investment of retrofit measures, how returns vary with individual ECMs and packages of

ECMs, and the hurdle rate required by owners to invest in retrofits in practice.

This paper examines a critical, and previously unexplored, question about the link between

building energy retrofits and financial performance. Using a unique, large-scale database of building-

specific energy use, systems, financial metrics, construction permit records, and energy audit data,

we estimate the hurdle rate for energy retrofit investments, using actual audit data and permit-

ted renovation work. By modeling the internal rate of return (IRR) and net present value (NPV)

for energy retrofit investments for different property types and building characteristics, we model

the perceived risk of these investments and discuss incentive and regulatory mechanisms that can

overcome financial and informational barriers to the adoption of energy efficiency measures. Ulti-

mately, this study presents a detailed analysis of the potential return profiles for building retrofits

across building types and characteristics, and what ECMs are most likely to be adopted and in what

circumstances.

2. Data

2.1. Building Audits (LL87)

The comprehensive energy data ecosystem in NYC provides an unprecedented opportunity to ex-

amine the relationship between energy performance, retrofit energy savings potential, and financial

performance in commercial and residential buildings. The City has recently introduced several policy

innovations to drive energy efficiency market transformation. In 2010, Local Law 84 was launched,

mandating all properties larger than 50,000 sq.ft. to annually report their energy consumption. In

2013, Local Law 87 required a randomly-identified subset of LL84-covered properties each year to

undertake an energy audit and report its results. The data collected under LL87 include informa-

tion about a building’s physical characteristics, energy systems, as well as ECM recommendations

with their associated implementation costs and energy/cost savings potential. These mandatory

audits, known as Energy Efficiency Reports, must be conducted by a certified design professional

to American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Level 2
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standards.1

We analyze data from approximately 4,000 building audits reported through LL87 between 2013

and 2016. The NYC Mayor’s Office of Sustainability (MOS) identifies buildings that have to comply

with LL87 by matching the last digit of the reporting year and the last digit of Borough-Block-Lot

(BBL) 10-digit unique property identifier (NYC Mayor’s Office of Sustainability, 2019). For the

year 2015, as an example, MOS selected all properties with 5 as the last digit of their respective

BBLs. Therefore, each audit is associated with a unique building identifier that can be used to join

the audit data to energy performance (LL84), zoning and tax information (PLUTO), and building

permit records. We constrain our analysis to the main two building typologies encountered in the

data, namely multifamily residential buildings and office buildings. Although LL87 are reported by

certified energy professionals, we encounter several misreported or erroneous entries that need to be

treated before analysis. Data pre-processing proceeds in the following steps: First, we standardize

BBLs and remove erroneously reported entries. Second, we identify properties where no ECMs

were recommended. After merging audit records in different years based on BBL-BIN (Building

Identification Number) pairs, we parse Gross Floor Area (GFA) and Energy Use Intensity (EUI)

values into regular expressions (e.g. “400,392.923 square feet” becomes “400392”). We then extract

the ECM recommendations and remove those that are missing one of the following fields: category,

implementation cost, annual cost savings, annual energy savings. Finally, we exclude from our

analysis ECMs with payback periods longer than 50 years and less than 0.5 years, as we identify

these as outliers based on the sample distribution.

2.2. Building Construction and Renovation Permits

Several major cities in the U.S., including NYC, have digitized the construction and renovation

permit application process. In NYC, the Department of Buildings (DOB) maintains building permit

records that includes BIN, BBL, building type, permit type, job type, filing date, job description,

and owner’s information (New York City Department of Buildings, 2015). The permit type is a series

of codes describing the proposed work in the property based on the nature of the application, such

as major alteration (i.e. alteration that will change the use, egress, or occupancy of the building),

minor alteration (i.e. multiple types of work that do not affect the use, egress, or occupancy of

the building), and minor work (i.e. typically repair work that does not affect the use, egress, or

occupancy of the building). Table 1 is a summary of building alteration permits from 2013 to 2017.

NYC recorded a total of 188,051 alteration permits with the majority (75%) classified as minor

1For more information: Local Laws of the City of New York, No. 78.http://www:nyc:gov/html/planyc2030/

downloads/pdf/ll87of2009 audits and retro-commissioning:pdf
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alterations. Of these, approximately 12.39% (n=23,306) of the total permits occurred in buildings

that comply with LL87. By matching permit data and audit records by BBL and comparing the

audit date and permit �ling date, we identify 6,111 permits related to post-audit actions, which

includes 21 major alterations, 5,182 minor alterations, and 908 minor work projects. We note that

a building can have multiple permits attributed to it in the post-audit period.

Table 1: Building alteration works by permit type and critical components

Permit type

Sample size
2013-2017 All permits All permits in buildings comply with LL87 Post-audit permits

Major Alteration (A1) 6313 87 21
Minor Alteration (A2) 140689 20078 5182
Minor Work (A3) 41049 3141 908

Total 188051 23306 6111

In addition to permit typology, NYC DOB's permitting system provides multiple check-boxes

for common alteration actions (e.g., boiler, mechanical, HVAC2) (DOB, 2016). As Table 2 shows,

building enlargement is not common due to the building types that are covered by LL87 and zon-

ing regulations that constrain building expansion. Although about 65.5% of minor work permits

checked equipment, the relatively low percentages indicate that these check-box information �elds

do not capture the full extent of renovation work. Therefore, the current binary variables in a

permit application provide limited information describing the proposed work. Therefore, extracting

information from the user-generated text input �eld for the scope of work description is necessary

to understand the nature and extent of permitted work. The DOB permit �ling system requires

that applicants (e.g., a licensed architect or engineer) provide a text description to summarize the

proposed work, including major actions (e.g., replace, remodel, renovate), building systems a�ected

(e.g., boiler, wall, �xture), and locations of work within the building (e.g., kitchen, bathroom, bed-

room) (Table 3). We use natural language processing and text mining to standardize and extract

the information contained in these text �elds.

Table 2: Post-audit alteration works by permit type and critical components

Permit
Component

Plumbing Mechanical Boiler Equipment Horizontal Enlarg. Vertical Enlarg.

Major Alteration (n=21) 17.4% 8.7% 0.0% 0.0% 0.0% 4.3%
Minor Alteration (n=5182) 23.3% 11.7% 1.2% 1.5% 0.0% 0.0%
Minor Work (n=908) 0.0% 0.0% 0.0% 65.5% 0.0% 0.0%

2Heating, ventilation, and air conditioning.
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Table 3: Sample post-audit building alteration permits
BIN # BBL Permit Type Time Full Description

1025xxx 1010360xxx Major Alteration 2015-08-20

Filing to convert a portion of the existing stor-

age area to a tenant's only laundry room. New

non-load partitions, doors, ceiling and �nishes.

Installation of dryer duct ventilation system.

Plumbing work for new laundry equipment as

shown on drawings �led herewith.

1037xxx 1013150xxx Minor Alteration 2015-04-17

Cooling tower replacement on the 19th 
oor

roof as per plans �led herewith. No change in

use egress or occupancy.

1042xxx 1013990xxx Minor Work 2015-05-11
Hereby �ling for installation of new steel and

laminated glass marquee.

NOTES: This table illustrates partial key information and does not include full permit data attributes.

Figure 1: Data integration and analysis work
ow.

3. Methodology

Figure 1 summarizes our overall data integration and analysis approach. Using four years of

energy audit reports and �ve years of permit records, we �rst extract detailed descriptions and

metrics for each ECM recommendation by building. We then conduct text mining to generate a

dictionary of recommended upgrades for each individual ECM category derived from the full audit

sample. We then match audit recommendations with DOB building permit scope of work data

to identify ECM adoption based on actual renovation activity subsequent to an audit. For all

buildings, we estimate NPV and IRR for three scenarios representing return-maximizing, energy

savings-maximizing, and balanced packages of ECMs. For buildings where audit recommendations

were adopted, we calculate the IRR based on the bundle of adopted ECMs, and compare these

values to the three potential adoption scenarios described above.
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Figure 2: Sample building NPV curve.

3.1. Building Audit NPV Curves

Using the implementation cost, energy savings, and annual cost savings data for individual ECM

recommendations provided in the audit report, we compute the NPV for each as follows:

NPV =
nX

t =0

Rt

(1 + i )t (1)

where n is the number of time periods of the investment,Rt is the net cash 
ow at period t,

and i is the discount rate. For the purpose of this study, we assumen = 15 years and i = 0 :1.

After calculating the NPV for individual ECMs, we are able to compute the cumulative NPV for

all ECM recommendations for each building and plot the calculated values by cumulative energy

savings. Figure 2 shows the NPV/energy savings curve for a sample building in the data, with each

point indicated on the curve associated with a speci�c ECM. Note that we normalize both NPV and

energy savings by the building area to allow for comparison across building types and characteristics.

The curve presented in 2 is one of three commonly-identi�ed NPV pro�les, with the other two being

a linear positive slope and the other a linear negative slope.

In this particular example, we see that the NPV curve peaks after two ECMs (speci�cally, HVAC

controls and occupancy sensors for the lighting system), and the remaining ECMs are NPV negative.

However, only the last recommendation for conveying systems causes the building's cumulative
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NPV to drop below zero. Calculating cumulative NPV/energy savings curves for each building in

the data allows us to study in
ection points in the curves, draw a more nuanced picture of the

proposed ECMs' economic feasibility, focus on certain subsets of ECMs, and compute additional

�nancial metrics. We calculate a NPV curve by plotting cumulative NPV (normalized per square

foot) against energy savings per square foot, with each point on the curve represented by a single

ECM. Based on these points, we de�ne three bundles of ECMs or retro�t scenarios:NPVmax : the

set of ECMs that maximize NPV, NPVneutral : the set of ECMs yielding cumulative NPV close to

zero, andEnergySavingsmax : all ECMs that would result in the greatest possible energy savings. For

each scenario, we calculate the IRR for the identi�ed ECMs that comprise each scenario. Moreover,

based on the building's physical characteristics (age, area, EUI), we subset the data and study the

aforementioned metrics by building sub-categories.

3.2. Text Mining and Audit-to-Permit Matching

We �rst identify buildings with alteration work subsequent to the date the audit was performed

on the building, according to the �ling dates of both audits and permits (if any). If a building has

no post-audit permit record, we assume no renovation activity occurred in the building and thus no

audit recommendations were adopted. It is possible, however, that the implementation of a particular

ECM would not require the �ling of a building permit; we discuss this scenario in more detail below.

In the LL87 audit data, each ECM recommendation has a category-suggestion structure. Based on all

recommendations, we generate ECM category-speci�c dictionaries by extracting text from auditors'

recommended improvement (e.g. upgrade to LED). We use part-of-speech (POS) tagging to clean

the raw permit descriptions by dropping conjunctions, determiners, pronouns, and punctuation. For

each word, we calculate its frequency based on its total appearance divided by total appearance of

all vocabulary. Therefore, a �nal dictionary contains all unique words and their frequency, which are

objectively quanti�ed based on empirical audit records. Figure 3 are word-clouds that visualize the

top 30 words for each ECM category. Using these dictionaries, we estimate the adoption likelihood

for each ECM recommendation, according to its identi�ed post-audit building permit descriptions.

For building permit descriptions, we clean input text for the scope of work using a similar

POS tagging process. To compare the content between a permit description and a speci�c ECM

recommendation, a word-matching algorithm proceeds in the following three steps: First, according

to the ECM category, it associates the scope of work description with the dictionary mentioned

above. Then, based on this dictionary, it identi�es the words that appear in the permit description.

Finally, it returns two new variables: (1) the total number of matched words and (2) a list of matched

words. This approach quanti�es the relationship between post-audit building permit descriptions

and each ECM recommendation category as an estimate of the likelihood of ECM adoption.
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